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ABSTRACT

This describes a knowledge base (KB) partitioning approach to solve the problem of real-time performance
using the CLIPS Al shell when containing large numbers of rules and facts. This work is funded under
the joint USAF/NASA Advanced Launch System (ALS) Program as applied research in expert systems to

perform vehicle checkout for real-time controller and diagnostic monitoring tasks.

The Expert System advanced development project (ADP-2302) main objective is to provide robust systems
responding to new data frames of 0.1 to 1.0 second intervals. The intelligent system control must be
performed within the specified real-time window, in order to meet the demands of the given application.
Partitioning the KB reduces the complexity of the inferencing Rete net at any given time. This reduced
complexity improves performance but without undo impacts during load and unload cycles. The second
objective is to produce highly reliable intelligent systems. This requires simple and automated approaches
to the KB verification & validation task. Partitioning the KB reduces rule interaction complexity overall.
Reduced interaction simplifies the V&V testing necessary by focusing attention only on individual areas of
interest.

Many systems require a robustness that involves a large number of rules, most of which are mutually
exclusive under different phases or conditions. The ideal solution is to control the knowledge base by
loading rules that directly apply for that condition, while stripping out all rules and facts that are not used
during that cycle. The practical approach is to cluster rules and facts into associated "blocks". A simple
approach has been designed to control the addition and deletion of "blocks" of rules and facts, while
allowing real-time operations to run freely. Timing tests for real-time performance for specific machines
under R/T operating systems have not been completed but are planned as part of the analysis process to
validate the design.

BACKGROUND

The Air Force and NASA have recognized that our nation's current suite of launch vehicle systems has a
number of problems making them inadequate for the projected needs after the late-1990's. High costs of
above $2,000/1b of payload delivery, a low reliability, poor resiliency (standdowns of many months for
current expendables), and limited launch rate capacity are reasons behind the joint USAF/NASA effort for
an operational ALS and Shuttle ‘C’. These will serve the commercial and DoD mission models beginning
in 1998. In order to meet the goals of $300/1b and launch rates as high as 50 missions annually, these
systems and their associated ground operations segment must be made as autonomous as possible, while
at the same time improving reliability and safety. Under the ALS Program, a study was initiated to explore
the use of knowledge-based system (KBS) techniques for the purpose of automating the decision
processes of these vehicles and all phases of the ground operations segment by assessing the feasibility,
benefits, and risks involved.

An expert decision aid is a software approach to solving particular problems that are constantly changing
over time and are complex or adaptive in behavior, the opposite of an analytical problem that is basically
deterministic. Examples of these types of problems are: the re-scheduling of a vehicle checkout due toa
damaged cable; or, determining if a system is indeed faulty given conflicting sensor readings. These
heuristic problems require a depth of knowledge and experience (art rather than science) to form solutions
quickly. Expert systems embody that collection of knowledge and experience in modular pieces that are
rules and facts that describe the proper thought process for a given set of circumstances arrived at by any
path. It is this modular independence that makes expert systems attractive. The incremental improvement
of knowledge and experience can be built and tested readily without re-testing the rest of the software
system, unlike conventional software that is difficult to maintain in a day to day changing environment.
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INTRODUCTION

This work was funded under a joint effort on the part of NASA and USAF for the Advanced Launch
System (ALS) program, as applied research in expert systems. The implementation of robust, real-time
expert systems is considered to be an important technological addition to the design and development of
the ALS vehicle. In a document released by the Aerospace Industries Association of America (AIAA) in
April 1989, Artificial Intelligence technology was identified as one of the eight key technologies for the
1990’s. This selection was founded on the basis of greatest potential payoff, broadest application base,
and highest leverage. With the success of non-real-time expert systems already established, it was
important to produce real-time expert systems that would exhibit the benefits of the technology within the
scope of the ALS program.

In attempting to select a candidate expert system development tool to implement robust, real-time
production systems, speed was the most obvious factor considered. A leading candidate was the “C
Language Integrated Production System” (CLIPS), developed at the Artificial Intelligence Section (AIS) at
NASA/Johnson Space Center. Based on the fact that CLIPS is written in C (considered one of the faster
programming languages), and its lean implementation, it was determined that it held the highest potential
of all tools reviewed, for use in real-time expert systems applications. Another factor was that of software
flexibility. CLIPS was chosen because of the nature of the tool. It is public domain software so therefore
the source code can be modified. Its C implementation permitted easy imbedding into the application
system and easy integration with most graphics libraries and other languages (for ex. LISP). And finally,
it provided a hardware independent inference vehicle, allowing development on lap-tops and run-time
multi-system integration on high performance workstations and multi-processor systems. Overall, the
belief was that CLIPS would be the best available tool to realize robust, real-time expert system
implementations within the ALS program.

One of the major problems facing robust, real-time expert systems is that there have not been enough
successful systems to make a significant impact on the commercial or military community. This was the
same type of problem that initially hindered the success of non-real-time expert systems. An earlier
attempt at creating a modification of CLIPS for use in real-time applications, the Portable Inference Engine
(PIE) by T. Le and P. Homeier of the Aerospace Corporation, has not yet been widely accepted by the
CLIPS user community.

The approach that was chosen for the ALS program was to create a rule partitioning approach that would
not require modification of the actual CLIPS code, but would instead be application- specific CLIPS code
that could be used to reduce the knowlcdge base (the number of active rules and facts). This is effectively
knowledge-base “control blocking”. The examination of rules that do not fire during an expert system
. application's cycle is the unfortunate overhead that expert systems typically carry. There a only a few
expert system development tools that implement the concept of knowledge base rule blocking, where

production rules are organized into logical arrangements to facilitate better control of the execution of those

rules. An example of this approach is found in IBM's Expert System Environment (ESE). The challenge
was to create a similar rule partitioning approach in CLIPS. This would then permit the development of
robust, rcalanmc controller applications for use in the ALS program.

APPROACH

The approach taken to achieve real-time response using CLIPS was to control the number of production
rules that would appear in a real-time window (0.1 to 1.0 seconds) during any cycle, without any
significant degradation in performance - i.e. continual real-time operations. The method that was selected
was one that would remove blocks of production rules and associated facts that were not being used
during a real-time cycle and would add any blocks of production rules and facts that would be required
during that same cycle. This is a procedure that is automated in some expert system development tools,
but this automation has overhead that does not permit expert systems to perform in real-time. As an

336

-

s,



example, ESE uses "Function Control Blocks" to control rule sets. This is an effective method of
controlling production rule examination, yet it does not permit real-time applications to be implemented.

In developing the CLIPS approach, overhead costs were unavoidable. The first cost was that each
production rule would carry the overhead of an associated fact, in order to facilitate production rule
removal. Each production rule is assigned a fact whose value is the rule name, which is then referenced
by an excise statement. It was determined that this was the simplest and most efficient approach. The
next cost was that production rule removal requires a CLIPS rule that will remove both the production rule
and the associated fact. By using an excise statement to remove the rule and a retract statement to
remove the fact (a pointer to the rule), all traces of the production rule are removed from the real-time
cycle. It was determined that this was, again, the simplest and most efficient approach.

Another factor contributing to the overhead is that each production rule partition should (conceptually) be
stored in an external file; I/O calls to external files are a major contributor to system performance
degradation. A partial solution to this problem is to group together blocks of production rules that have
common characteristics, and store the grouped rules in fewer external files. This will greatly reduce the
number of 1/O calls required in a real-time cycle, and therefore speed up the execution of the expert system
application. To further reduce the overhead of excessive I/O calls, production rule partitions should be
organized in an efficient manner. This can be done using a variety of different methods. Using mutual
exclusivity of production rule partitions is very important in reducing I/O calls. By using mutually
exclusive production rule partitions, all extraneous test level rules (see below) can be avoided. When
organizing test level rules, attempt to organize production rule partitions in a manner that will not attempt to
load duplicate production rules. This task can be performed by analyzing all conditions that are used to
load each production rule, categorizing those rules, and putting all of the similar production rules in
categorized external files. For rule removal, the simple rule is to remove only the production rules that are
not needed for the upcoming real-time cycle. In other words, don’t leave a production rule in the rule base
if it’s not needed during that cycle; it can be loaded at the next appropriate cycle.

Finally, each test level check, for both production rule block removal and loading, is in itself a rule. These
test level rules can be reduced in number by finding conditions that are common within the application’s
testing conditions and incorporating them into fewer test level rules.. When used across an entire expert
system application, this type of control will greatly reduce the number of test level rules. Unfortunately,
the test level rules cannot be removed. Therefore, if a test level rule will not remove at least three
production rules, it is probably not efficient to execute that test level rule.

The test level rules must be executed at the beginning of each cycle. Therefore, they should be assigned
the highest salience possible. In addition, these test level rules should be ranked, with the basis of the
ranking taking on the characteristics of the application. For example, a system that has mutually exclusive
blocks of production rules should have the mutual exclusivity test level rules examined first, and then
examine the explicit test level rules. Test level rules remove subsets of production rules loaded during the
previous cycle, and add production rules needed for the current real-time cycle. The test level rules can -
also turn on and off any facts generated by test level rules. This will further control production rule
loading and removal. These facts can also be used to preserve rules that must stay resident in the
production rule-base for multiple cycles. Typically, a test level rule with a salience of 10000 will assert
facts that will have an effect on test level rules with a salience of 9999 and below. The rules with the
salience of 9999 will then assert facts that will have an effect on test level rules with a salience of 9998 and
below. This procedure will continue until all test level rules have been examined. The production rules
that remain in the knowledge base for that cycle will then execute.

Figure 1 gives an example of loading and removing a “control block™ (a collection of rules and facts).
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CLIPS Knowledge Base Partitioning Scheme

Example: actual CLIPS code, loaded into a file (remove_rulea.clp)

(deffacts x (x 0))

(deffacts rulea_facts (rulea a0) (rulea a2))

(defrule a0 (x 0) => (fprintout t "Answer is 0" crif))
(defrule a1 (x 1) => (fprintout t "Answer is 1" crlf))
(defrule a2 (x 2) => (fprintout t "Answer is 2" crlif))
(defrule a3 (x 3) => (fprintout t "Answer is 3" crlf))
(defrule a4 (x 4) => (fprintout t "Answer is 4" crlf))
(defrule remove_rulea (?kptr <- (rulea ?kname) =>

(fprintout t "Going to remove rule " ?kname crif) (excise ?kname) (retract ?kptr))

Procedure:
>(load "remove_rulea.clp”)
>(reset)
>(facts)

f-0 (initial-fact)
-1 (x0)

f-2 (rulea a0)
f-3 (rulea a2)
>(rules)

a0

al

a2

a3

a4

remove rulea

[continued next column)

>(run)

Going to remove rule a2
Going to remove rule a0
2 rules fired

>(facts)

f-0 (initial-fact)

f-1 (x0)

>(rules)

at

a3

ad

remove _rulea

Figure 1 —CLIPS Knowledge Base Partitioning Scﬁeme
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CONCLUSIONS

There is significant interest in developing and implementing robust, real-time expert systems applications
for the ALS Program. Real-time expert systems show great promise in reducing costs for ALS vehicle
launches. With small rule sets of twenty to fifty rules and a real-time operating system, the performance of
the rule partitioning approach was well within the limits of the one second real-time window. Future
timing tests performed for large rule sets under a real-time operating system, will demonstrate the ability of
CLIPS to perform in real-time.

There are additional benefits of the knowledge base rule partitioning approach. Using the approach
outlined above, the application of generic verification and validation techniques for expert systems are
more likely to succeed than with traditional expert systems. By efficiently grouping the production rules,
modular testing and documenting of modifications and enhancements are easier to perform than non-
modularized expert systems applications. In addition, each partitioned production rule set can be
independently verified and validated. This is a significant advantage over expert systems with non-
partitioned production rules, and can ultimately lead to lower expert system maintenance and enhancement
costs. When compared to non-partitioned rule bases, modularized production rule bases are easier to
document, and subsequently the documentation is better. Better documentation normally results in lower
maintenance and-enhancement costs. There is strong evidence that the ability to verify and validate expert
systems will be a major factor in their expanded use in the military and commercial community,
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