
i

A CASE FOR AF}TIFICIAL INTELLIGENCE
IN AUTONOMOUS AIR VEHICLES

Joseph D. Mainardi

GENEF=AL EJYhlAMIE=
Convair Division

5001 Keamy Villa Pload
Mail Zone 44-6980

San Diego, CA 92138
(619) 694-9120

I NT R O D U CTI O N

Smart weapons, like the Tomahawk missile, are already a reality. Because smart
mission management and search analysis are a few of the new challenges facing
developers, the use of Artificial Intelligence (Al) technologies will be a viable
alternative to conventional software systems that will be developed for use in an
autonomous air vehicle (AAV).

The mission management task involves the command and control for high-level
functions of on-board software subsystems. An AI solution would be appropriate for
use in this type of decision support system. The leading candidates for this task are
based on: decision trees, a hybrid frame/object-based & rule-based system, or a
hybrid data-driven & goal-directed system. Another task is priority area search terrain
analysis, where a terrain grid is subdivided into cells and analyzed to determine the
most likely locations for targets. This will require an analysis of a combination of
positive and negative conditions, which is well suited to Al technology. The most likely
candidate for this task is an advanced feature recognition algorithm. To support future
implementation in an embedded, on-board environment, the software will be
developed using the Ada language.

This paper will present an overview of these two tasks, in the form of an alternative
approach to conventional software solutions. In addition, the issues of basic design
using AI methodologies, tool selection and verification & validation will be discussed.

a A C K G FI 0 U N D

As part of the on-going effort to provide smart weaponeering for AAV's, General
Dynamics Convair Division has been contracted to meet specific objectives to reach
that goal. One of the objectives is to demonstrate the ability to perform real-time
search and recognition under realistic target deployment scenarios and flight
conditions. A specific objective that is well suited for Al technologies is in providing
smart search for an AAV, which will include utilization of "a priori" data on target
locations and target deployment tactics.

This paper was funded under Independent F}esearch & Development (lF3&D) for the
Department of Defense. The Aerospace Industries Association of America (AIAA)

considers the implementation of real-time, embedded Al technology to be an important
technological addition to the design and development of future weapons systems. In a
document released by the AIAA in 1989, AI technology was identified as one of the
eight key technologies for the 1990's. Their selection of AI was founded on the basis
of AIAA internal studies, and was chosen on the basis of: broadest application base,
highest leverage and greatest potential payoff. While there are successful non real-
time Al based systems in place, the goal here is to demonstrate real-time Al based
systems, as an alternative to conventional software systems, that will exhibit the
benefits of Al technology within the scope of AAV's.

There are two specific applications that show promise as Al based applications. One
of the tasks was to provide on-board mission management support. This system will
manage the overall decision making required for an on-board computer system, while
controlling interface and component subsystems that require real-time performance in
a semi-autonomous environment. The other task was to provide a way to perform
priority area search terrain analysis in real-time. This system will provide a
mechanism that will permit a terrain grid to be subdivided into cells and analyzed, in
order to determine the most likely locations for targets or threats.

Mission Manager unit - MMU

The overall decision management system is called the Mission Manager Unit.
Because many of the decisions to be made are required in real-time, the MMU will
have to provide guaranteed response times. Due to the mix of on-board conventional
and Al based software, integrating numeric and symbolic computing will be necessary.
A typical decision management system provides command and control functions for all
of the on-board software subsystems. Most of the command and control will occur
within the MMU, while the remaining command and control will occur within interface
subsystems associated with the component subsystems. The MMU will have
command and control of a mix of component (conventional) subsystems and interface
(Al technology) subsystems. Figure 1 depicts a possible generic final implementation
for the MMU.

A component subsystem, or reactive agent, is any conventional software that is
designed or implemented outside of the specific requirements of the MMU, and whose
communication information is required for operations related to the MMU. These
subsystems solve hard real-time problems, which refer to those deadlines which, if not
met, will likely lead to catastrophic failures (loss of human life, permanent hardware
failure, vehicle destruction, etc.). An interface subsystem, or cognitive agent, is any Al
based software that is designed or implemented as a specific requirement of the MMU,
and is used to interface between the MMU and a component subsystem. These
subsystems solve soft real-time problems, which refer to those deadlines which, if not
met, will rarely lead to catastrophic failures. Interface subsystems are most often used
under the following conditions: (1) communication between the MMU and a
component subsystem is not feasible, (2) the use of a knowledge based system makes
good sense as an interface between the MMU and a component subsystem, or (3) the
MMU rules directly related to a component subsystem grow to the point that they would
create difficulties for the MMU in achieving real-time performance levels.

Vehicle
Management

(GNC)

nrd„-

I
: Interface
: Subsystem
: cquw giv

i:----

'------i-.----`
: Interface :
: Subsystem :
:-----i------icoqnl(„ giv

Automated
f]Oute

Generator

DeMci|Ssi:onnsM:a:%e5yusT:tin
I

Knowledge Base

Inference Engine

Fact Maintenance

meta-level agent

?-R----T------.
: Interface :
: Subsyst®m :
:.-.--i-..---icoqui,w ,an

Optimal
Searcli Path
Generator ®®®

Figure 1, MMU final implementation

„-.:i---I I nte rface

Subsystem :

--.-i------icoqnldv. .9eof

Additional
Component

Software

The MMU and the component and interface subsystems are considered agents and
they are initially created as stubs. An agent is any fundamental active entity
associated with the MMU, for both component and interface subsystems. A stub is
either data or code the emulates or simulates the functions and responses of an actual
agent. Stubs will be replaced whenever a component subsystem or interface
subsystem has been completely tested, verified and validated for use in the overall
system. The MMU is considered a meta-level agent, which performs command and
control operations such as: task assignment to lower-level agents, reconciliation of
conflicting recommendations, data input control, scheduling and time management.

Agents may be perceived as knowledge sources, which can be any type of software
program of widely varying size and complexity, as they either produce or modify
knowledge. Most agents, particularly interface subsystems, will have capabilities,
interests and acquaintances. A capability is an output information field from an agent,
and is used by other agents that have both an interest in the information and is an
acquaintance of the agent providing the output. An interest is an input information
field that is used by an agent to perform specific tasks, and can only use the
information if is an acquaintance of the agent providing the information. An
acquaintance is a representation of a relationship between two or more agents that
are associated with common information fields.

The approach taken to create the components of smart search in a real-time
environment was to create a knowledge based system that would provide a distributed
base for the on-board decision making process. There are many advanced
technology concepts that are applicable to the MMU task. Intelligent information
transfers to and from the MMU are useful and necessary. This information transfer is in
the form of information fields, and can be passed between the MMU and either a
component subsystem or an interface subsystem. Each MMU subsystem agent will be
separately evalu.ated, and will be designed and developed based on that evaluation.
Some subsystem agents will require Al based solutions, while others will not require
any form of Al technology. The concept of semi-autonomy permits the component
subsystems to control their specific environments, while still being responsive to
command and control information from the MMU. This information is transmitted
between the MMU and component subsystems or interface subsystems.

Due to the complex interrelationships between the agents, the distributed AI concept
of multi-agent systems will be used. The multi-agent system will comprise intelligent
behavior among the semi-autonomous subsystems. These agents will coordinate
knowledge, data and goals in order to take action or solve problems. Interaction and
communication will be routed through the MMU, so there will be no interconnections
between the other agents. It is possible to create interconnections between other
agents, but this would probably push us beyond a real-time window for all but the most
simple cases. We will use a component based framework, as we are designing and
building a conglomerate of mutually dependent tasks which will be decomposed into
appropriate subtasks. Because there will be occasions where we will have the need
to go beyond the surface understanding of a problem and understand the underlying
domain knowledge, deep knowledge will be used. Because it is less biased toward
direct use, deep knowledge allows us to create reusable software for other
subsystems or projects.

The concept of approximate processing will be used for the MMU. Approximate
processing can be used on both data and knowledge, and will make real-time
solutions possible. The need for approximate processing is because current methods
in smart weapons mission planning have not yet reached an appropriate level of
expertise. An example of the need for approximate processing would be in the area of
real-time mission replanning. By being able to approximate the decision making
process, some of the detailed analysis can be avoided. Under certain circumstances,
approximate processing may be better suited to our purposes than exact processing,
as solutions might not be possible if exact processing was used. These approximate
processing activities will be consistent with exact processing activities, and both
strategies will be combined at a later date. Exact processing will replace approximate
processing when the level of mission planning expertise is raised to a level that
permits the replacement to take place. Knowledge approximation can be used until
such time that exact knowledge strategies are available. It would not be unusual to
leave an approximate processing system in place even after exact knowledge was
available, as the approximate knowledge may be sufficient, and may perform better
than an exact knowledge counterpart.

In order to guarantee real-time command and control, fact maintenance is required for
the the MMU and each interface subsystem. This is a requirement that will help to
avoid data degradation. Fact maintenance should be invoked whenever: (1) a
milestone has occurred (area scanned, target destroyed, etc.), or (2) certain data or
facts are no longer considered useful or credible.

We will be developing software based on at least one of three knowledge
representation concepts: decision trees, a hybrid goal-directed & data-driven system,
or a hybrid frame/object-based & rule-based system. In so much as the information
about these knowledge representation concepts is widely available, I will not go into
detail about the concepts. Instead, I will mention the possible candidate software tools
for each concept. In the area of decision trees, The "Knowledge Shaper' tool (from
Perceptics) will generate optimized procedural Ada code, based on one or more
irreducible decision trees. This tool creates the decision trees with or without the
implementation of user designed cost or control biases. We would need to create the
software that would invoke these generated processes. The book "Artificial
Intelligence with Ada" (by Louis Baker,1989, MCGraw Hill Publishers) has examples
and source code for both goal-directed and data-driven systems. Our internal design
and development effort would require an integration template joining the two types of
systems. For the hybrid frame/object-based & rule-based system, the "AF}T/Ada" tool
(from Inference) integrates frames & objects with rules. Also, the "Artificial Intelligence
with Ada" book has examples and source code for this type of system. This would be
an internal design and development effort, and would only be used if there was an
agent that required a hierarchical inheritance structure.

Priority Area Search Terrain Analysis - PASTA

Another task was to provide a way to perform real-time priority area search terrain
analysis, in order to determine the most likely locations for targets or threats. PASTA
will permit an autonomous air vehicle to rank and rate the cells of a terrain grid, based
on a list of specified vehicles. The PASTA agent will be an interface subsystem of the
MMU, and will have its own specific subgoals. It will identify possible target areas,
based on "a priori" information about the terrain grid in question.

A straightforward algorithm is used to help determine the most likely locations for
targets or threats. Vehicle specific continuous functions are required to quantify
relationships based on terrain slopes and terrain cell proximities. An example of a
terra.in sldpe tunct.lan .is now described. For an _S_S-21 .TEE {Tr?nsporter. Erec|,or
Launcheri, the terrain slope value .Is be!w?en _0._0 and .1.0__inplusive, .wh.pre t.he.
continuotis function produbes values such th€t 0.0 ?qL!£ls 9_0. degrees inplipe, ..P.5
equals a 45 degree ifrcline ?n.d_1.0 Equals ai 0..degree inc.II.ne. .T.he equatig.n looks !i.*p:
TSss-21 TEL = (90-incline[d.g]) / 90. Two possible examples of terrain cell proximities
are now described. The first example is for a UAZ-469 (Jeep). The prox/.mffy va/ue for
a tree cell near a road cell is 0:0 to 1.0 .Inclusive, where the continuous function
produces values such tf tat .P.0_ e_quals .a dis{?poe of 2.5P.Peter.S or ,more..fr_oT_t_he_ _t|,eLe_'cell to the nearest road cell, 0.5 -equals a distance of 125 metgrs frqm the tree..cell !o

the nearest road cell,and 1.0 equals a d.Istaince of 0 ngeters from the tree cell tg _th_e
nearest road Ce//. The equation looks like: TPss.21 TEL[tree->road] = (250-
distance[m.I.I.I) / 250. The second example is also for a UAZ-469. The prox/`m/.fy
value for a tred cell near an open field cell is 0.0 to 1.0 inclus_ive,_where the continu.ous
function produces values such th?I .0..0 equ_al_s ai dis.tance. 9f 100 Te_t_ers o.r mo,re frp.in_
the tree .cell to the riearest open field cell, 0.5 equals a dis|ance of 50_ meters from i.Pe
tree cell to the nearest operi fiield cell,and 1.0 equals a. di.sta.poe o_i_0 meters from the
tree ce// fo fAe nearest open /r.e/d ce//. The equation looks like: TPssL2i TEL[tree->fleld]
= (100-distance[m.I.I.I) / 100.

For each of the steps presented in the algorithm example on the following pages, the
ita/i.cs fexf offers a verbal description of the equations. The first step is to read in all of
the negative effector condition thresholds and rules for each type of vehicle that is to
be identified (STEP 1). This step uses "a priori" knowledge about all vehicle types to
determine if it is necessary to look in a cell for a particular type of vehicle. By using
rules and thresholds, a negative value (0.0) or positive value (1.0) can be assigned to
any vehicle likelihood. The next step is to read in potential positive effector conditions
and likelihoods (STEP 2). This step uses "a priori" knowledge about all vehicle types
to determine the potential positive effectors for all of the vehicle types.

After reading in the negative and potential positive effectors, the next step is to read in
the cell information and likelihoods of the terrain cells (STEP 3 shows a subset of the
cell input data). This cell information is also "a priorin knowledge about the ter.rain;
updated terrain information can also be read in at this step. The next step is to
compute the negative effector condition likelihood for each class & cell combination
(STEP 4). This step is actually the execution of the rules from STEP 1, above. The
fifth step in this algorithm is to compute the potential positive effector condition
likelihood for each vehicle class and cell combination (STEP 5). This step multiplies

the values of each component in STEP 2 to the related component values for each cell
in STEP 3, and then dividing that number by the number of common components. For
comparison purposes, the MAX option is also displayed. The last step is to compute
the likelihoods for each vehicle type in all cells (STEP 6). This step simply multiplies
that vehicle related values from STEP 4 and STEP 5 to produce the probabilities.
Once again, the MAX option is also displayed.

Figure 2 shows a diagrammed view of a possible analysis. The shaded "probability"
squares reflect pre-determined probability levels for target or threat likelihood. For
example, an Excellent value would be considered a 75°/o to 100°/o target or threat
probability, and an Average value would be considered a 50% to 62.5°/o target or
threat probability. The numbers inside the cells represent a ranking of the search area
for a particular vehicle type (a UAZ-469 Jeep, for example).

(;`f`;`:`,`,a,Li,`,`,\\\\,,,
;iti2£ - +\+t`\

\ \\
\ \\
\\\ \`i`fj`, \
\,\'\\\, \\
\\ \\,\'\--- \,\-
TJ_\,I-\,\ \\\\ \\\:J\,\,i

©
®

Shrubs & trees

Dense trees

© Water (lake, pond)

Swamp

Graded road

Probabil.Itv of taraet /threat

Excellent

Above Average

Average

Below Average

Poor

Figure 2, Terrain cell rankings (with shaded probability levels)

An example of the PASTA algorithm is now presented. Note the following references:
[1] SS-21 TEL is code for a Transporter Erector (Missile) Launcher, [2] BTF]-60PA is
code for an Armored Command Vehicle, and [3] UAZ-469 is code for a Jeep. Also
note that the -> symbol represents relativity between cells. For example, tree->road
refers to the relative distance from a tree dominated cell to the closest road dominated
cell.

STEP 1 - F]cad ln the negatlve ®ffector condltlon thresholds & rules.
SS21 -TEL threshoids

NTLssL2i TEJfieid] I [1.0]
NTLssL2i TEL[tree] = [1.0] throshokJ /*o/i.hood /or ssL2J 7EL ;.a a lroo co// j.s /.O
NTLss.21 TE|urban] = [1.0]
NTLssL2i TEJrailroad] = [1.0]
NTLss.21 TEJwater] = [1.0]
NTLss.2` TEL|\ree->t.leld| = [0.8| throshoid likelihood for ss-21 TEL in a tree cell and.near a fieid is o.8
NTLss.2i TEL[tree->road] = [0.6]
NTLss.21 TEJfield->tree] = [0.8]
NTLss.21 TEL[terrain SIOpe] = [0.9]

SS21-TEL rules
NLss.21 TEL = 1.0

If urban >= NTLss.21 TEJurban] then NLss.21 TEL = 0.0
lf railroad >= NTLssr2i TEL[railroad] then NLss2i lil = 0.0
lf water >= NTLss2i TE|Water] then NLss.21 TEL = 0.0
lf field >= NTLss.21 TEL[fieid] and field->tree < NTLss.21 TEL[field->tree] then NLss.21 TEL = 0.0
lf tree >= NTLssei TEL[tree] and tree->fieid < NTLss.21 TEL[tree->fieid] then NLss.21 TEL = 0.0
If tree >= NTLss.21 TEL[tree] andtree->road < NTLss.21 TEL[tree->road] then NLss.21 TEi = 0.0
lf terrain slope < NTLssL2i TEL[terrain slope] then NLss.21 TEL = o.o

UAZ-469 thresholds
NTLUAz4edfieid] = [i .o]
NTLUAz46altree] = [1.o]
NTLUAz+co{urban] = [1.0]
NTLUAz46Ofrailroad] = [1.0]
NTLjAz4ce(Water] = [1.0]
NTLUAz+69[Swamp] = [1.0]
NTLUAzultree->field] = [0.5]
NTLUAz4co[tree->road] = [0.7] .
NTLUAz+al field->tree] = [0.5]

UAZ-469 rules
NLUAzco = 1.0
lf urban >= NTLjAz46Jurban] then NLUAzng = 0.0
lf railroad >= NTLUAzusJrailroad] then NLUAzue = 0.0
lf water >= NTLjAzulwater] then NLUAzco = 0.0
lf swamp >= NTLjAz+69[Swamp] then NLUAlT4co = 0.0
lf field >= NTLjAzulfield] andfieid->tree < NnuAzulfieid->tree] then NLUAz+co = 0.0
lf tree >= NTLu&rdtree] andtree->fieid < NTLUAz469[tree->fieid] then NLUAZT4co = 0.0
lf tree >= NTLjAl+co[tree] andtree->road < NTLUAz+co[tree->road] then NLUAzro = 0.0

STEP 2 - f]ead ln the potentlal posltlve effector condltlons & Ilkellhoods.
PLss,2nEL|\ree->I.leld\ --[0.9| likelihoed of ss-21 TEL in a trco cell and.near a fiekl is o.9
pLss.21 TEL[tree->road] = [o.7]
pLssL2i TEL[field->tree] = [o.9]
PLss.21 TEL[field->road] = [0.6]
PLss.21 TEL[road->tree] = [o.6]
PLssL2i TEi[road->f ield] = [0.8]
PLss.2i TEi[road] = [o.7]
pLssL2i TEJfield] = [o.5]

STEP 2 - cant.
PLjAlco[tree->fieid]
PLUAIco [tree->road]
PLjAl+e®[field->tree]
PLUHico [f ield->road]
PLu&|co [road->tree]
PLUAlco [road->f ield]
PLUAzco [road] = [0.9]
PLjAlae [field] = [0.5]

STEP 3 - Read ln the
cell [road] = [1.0]

cell lnformatlon & Ilkellhoods of three random cells.
roaid likelihood is 1.0 for this cell

cell2[tree] = [o.o]
Cell2[field] = [0.0]
celL[water] = [0.0]
cell2 [swamp] = [o.o]
Cell2[urban] = [0.0]
Cell2 [railroad] = [0.0]
Cell2[terrain slope] = [0.9] torrai.n sfopo /i.ke/i.hood i.s O.g /or fhi.s co//
Cell2 [tree->field] = [0.0]
Cell2 [tree->road] = [0.0]
Cell2 [field->tree] = [0.0]
Cell2 [field->road] = [0.0]
cello [road->tree] = [0.9]
Cell2 [road->field] = [0.9]

cell52 [road] = [o.o]
cell52[tree] = [o.o]
Cell52[field] = [0.0]
cell52 [water] = [1.o]
cell52 [swamp] = [o.o]
Cells2 [urban] = [0.0]
cell52 [railroad] = [o.o]
cell52 [terrain slope] = [o.1]
Cell52 [tree->fieid] = [0.0]
cell52 [tree->road] = [o.o]
Cell52 [field->tree] = [0.0]
Cell52 [field->road] = [0.0]
cell52 [road->tree] = [o.o]
Cell52 [road->field] = [0.0]

celL[road] = [0.0]
cell64[tree] = [o.o]
Cell64 [field] = [1.0]

celL [water] = [0.o]
cell [swamp] = [0.0]

STEP 3 - cent.
cell [urban] a [0.0]
celL [railroad| = [0.0]
Cell [terrain Stope] = [0.6] forrai.n sfopo /i.ko/i.hood i.s a.6 /or fhi's co//
Cello. [tree->fieid] = [0.0]
cell [tree->road] = [0.o]
cell6. [field->tree] = [0.71
cell [f ield->road] = [0.5]
Cells. [road->tree] = [0.0]
Cells. [road->field] = [0.0]

STEP 4 - Compute the negatlve effector condltlon llkellhood for each class & cell
combination.
cell2NLss.21 TEL = 1.o

cell2NLUAzico = 1.o

cell52NLss.21 TEL = o.o

cell52NLUAz4cO = o.o

cell64NLss.21 TEL = o.o

cell64NLUAz4cO = 1.o

STEP 5 - Compute the potential positlve effector condltlon llkellhood for each class &
cell combination.
cellepLssL2, TEL = I(o.6 + o.9) + (o.8 . o.9) + (o.7 + 1 .o)I ; 3 = o.65 {MAx = o.72}
cell2PLUAzun = I(0.6 + 0.9) + (0.9 + 0.9) + (0.9 . 1.0)I / 3 = 0.75 {MAX = 0.9}

cell52pLss-21 TEL = o.o

cell52pLUAz4cO = o.o

cell64PLssL2i TEL = I(0.6 * 0.5) + (0.9 * 0.7) + (0.5 * 1.0)] / 3 = 0.48 {MAX = 0.63}
Cells.PLUAzma = I(0.9 + 0.5) + (0.9 + 0.7) + (0.5 + 1.0)I / 3 = 0.53 {MAX = 0.63}

STEP 6 - Compute llkellhoods from steps 4 & 5.
cellecLs&2, TEL = 1.o * o.65 = o.65 {MAx = o.72}
cellecLjAzae = 1.0 * 0.75 = 0.75 {MAX = 0.9}

cell52cLss.21 TEL = o.o * o.o = o.o
cell52CLUAzue = o.0 * 0.0 = 0.0

celLCLss.21 TEL = o.o * o.48 = o.o
Cell64CLUAz.ee = 1.0 * 0.53 = 0.53 {MAX = 0.63}

IIikelihood of SS-21 TEL in cell 2 is 0.65 {MAX likelihood is 0.72}

CONCLUSIONS

We have demonstrated that there will be tasks where the use of AI technology will be a
viable alternative to conventional software systems for autonomous air vehicles. Two
such tasks have been discussed in this paper. The mission management task, where
control of the high-level functions of the on-board software subsystems will occur, and
the priority area search terrain analysis task, where a terrain grid is subdivided into
cells and analyzed to determine the most likely locations for targets or threats. While
there is significant interest in incorporating real-time Al technology to make smart
weapons a reality before the turn of the century, the ability to provide expertise for
these tasks is not as readily available. Until such time, the best that can be done is to

emulate the expertise. This can be accomplished by using selected information from
current autonomous air vehicle systems.

One of the issues that confronts Al based systems is in verification & validation (V&V).
While conventional, procedural Ada code is fairly easy to verify & validate, most Al
based software has not fared as well in the past. This is not to say that Al based
software can not be verified or validated. The major obstacle confronting the
developers of tasks such as the two in this paper, is to generate an end product that
conforms to V&V standards. The software development of the tasks presented in this
paper lend themselves to a converted Ada based procedural code end-product. This
fact alone greatly increases our ability to verify & validate the software. By developing
modular code whose end-product is procedural in nature, the process of proving the
correctness and functionality will be easier than with "pure Al" systems. It is this
combination of advanced Al techniques and V&V acceptability that will permit Al based
systems to move into the mainstream of real-time embedded computer systems.

