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I NT R O D U CTI O N

Smart  weapons,  like  the  Tomahawk  missile,  are  already  a  reality.    Because  smart
mission  management  and  search  analysis  are  a  few  of  the  new  challenges  facing
developers,   the   use   of   Artificial   Intelligence   (Al)   technologies   will   be   a   viable
alternative  to  conventional  software  systems  that  will  be  developed  for  use  in  an
autonomous air vehicle  (AAV).

The   mission   management  task  involves  the  command  and  control  for  high-level
functions  of on-board  software  subsystems.   An  AI  solution  would  be  appropriate  for
use  in this type  of decision  support system.   The  leading candidates for this task are
based  on:  decision  trees,  a  hybrid  frame/object-based  &  rule-based  system,  or  a
hybrid data-driven  & goal-directed system.   Another task is priority area search terrain
analysis,  where  a terrain  grid  is  subdivided  into  cells  and  analyzed to  determine  the
most  likely  locations  for  targets.    This  will  require  an  analysis  of  a  combination  of
positive and  negative conditions, which is well  suited to Al technology.   The most  likely
candidate for this task is an advanced feature recognition algorithm.   To support future
implementation   in   an   embedded,   on-board   environment,   the   software   will   be
developed using the Ada language.

This  paper will  present  an  overview  of these  two  tasks,  in  the  form  of  an  alternative
approach  to  conventional  software  solutions.    In  addition,  the  issues  of  basic  design
using AI  methodologies,  tool  selection and verification  & validation will  be discussed.

a A C K G FI 0 U N D

As  part  of  the  on-going  effort  to  provide  smart  weaponeering  for  AAV's,  General
Dynamics  Convair Division  has  been  contracted to  meet  specific objectives to  reach
that  goal.    One  of  the  objectives  is  to  demonstrate  the  ability  to  perform  real-time
search   and   recognition   under   realistic  target   deployment   scenarios   and   flight
conditions.    A  specific  objective  that  is  well  suited  for Al  technologies  is  in  providing
smart  search  for  an  AAV,  which  will  include  utilization  of  "a  priori"  data  on  target
locations and target deployment tactics.

This  paper  was  funded  under  Independent  F}esearch  &  Development  (lF3&D)  for the
Department  of  Defense.    The  Aerospace  Industries  Association  of  America  (AIAA)



considers the implementation of real-time,  embedded Al technology to  be an  important
technological addition to the design and development of future weapons systems.   In a
document  released  by  the  AIAA  in  1989,  AI  technology  was  identified  as  one  of  the
eight  key technologies for the  1990's.   Their selection  of AI  was  founded  on  the  basis
of  AIAA  internal  studies,  and  was chosen  on  the  basis  of:  broadest  application  base,
highest  leverage  and  greatest  potential  payoff.   While there  are  successful  non  real-
time  Al  based  systems  in  place,  the  goal  here  is  to  demonstrate  real-time  Al  based
systems,   as  an  alternative  to  conventional  software  systems,  that  will  exhibit  the
benefits of Al technology within the scope of AAV's.

There  are two  specific applications that show promise  as Al  based  applications.   One
of the  tasks  was to  provide  on-board  mission  management support.   This  system  will
manage the overall decision  making  required for an  on-board computer system,  while
controlling  interface  and component subsystems that  require  real-time  performance  in
a  semi-autonomous  environment.    The  other task  was  to  provide  a  way  to  perform
priority   area   search   terrain   analysis   in   real-time.      This   system   will   provide   a
mechanism  that  will  permit  a terrain  grid  to  be  subdivided  into  cells  and  analyzed,  in
order to determine the most likely locations for targets or threats.

Mission   Manager  unit  -  MMU

The   overall  decision   management   system   is  called  the   Mission   Manager  Unit.
Because  many  of  the  decisions  to  be  made  are  required  in  real-time,  the  MMU  will
have to  provide guaranteed response times.   Due to the mix of on-board conventional
and Al based software,  integrating  numeric and symbolic computing will be necessary.
A typical decision  management system provides command and control functions for all
of the  on-board  software  subsystems.    Most  of the  command  and  control  will  occur
within  the  MMU,  while  the  remaining  command  and  control  will  occur within  interface
subsystems  associated  with  the  component  subsystems.     The   MMU   will   have
command and control of a mix of component  (conventional)  subsystems and interface
(Al technology)  subsystems.   Figure  1  depicts a possible generic final  implementation
for the MMU.

A  component  subsystem,  or  reactive  agent,  is  any  conventional  software  that  is
designed or implemented outside of the specific requirements of the  MMU, and whose
communication  information  is  required  for  operations  related  to  the  MMU.    These
subsystems solve  hard  real-time problems, which  refer to those deadlines which,  if not
met,  will  likely  lead  to  catastrophic failures  (loss  of  human  life,  permanent  hardware
failure, vehicle destruction,  etc.).   An interface subsystem,  or cognitive agent,  is any Al
based software that is designed or implemented as a specific requirement of the MMU,
and  is  used  to  interface  between  the  MMU  and  a  component  subsystem.    These
subsystems solve soft  real-time  problems,  which  refer to those deadlines which,  if not
met, will rarely lead to catastrophic failures.   Interface subsystems are most often  used
under   the   following   conditions:   (1)   communication   between   the   MMU   and   a
component subsystem is not feasible,  (2) the use of a knowledge based system makes
good sense as an interface between the MMU and a component subsystem, or (3) the
MMU  rules directly related to a component subsystem grow to the point that they would
create difficulties for the MMU  in achieving  real-time performance levels.
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The  MMU  and the  component  and  interface  subsystems  are  considered  agents  and
they   are   initially  created   as  stubs.     An   agent  is  any  fundamental   active   entity
associated  with  the  MMU,  for  both  component  and  interface  subsystems.    A  stub  is
either data or code the emulates or simulates the functions and responses of an actual
agent.     Stubs  will   be   replaced  whenever  a  component  subsystem   or  interface
subsystem  has  been  completely tested,  verified  and  validated  for use  in  the  overall
system.    The  MMU  is  considered  a  meta-level  agent,  which  performs  command  and
control  operations  such  as:  task  assignment  to  lower-level  agents,  reconciliation  of
conflicting  recommendations, data input control,  scheduling  and time  management.

Agents  may  be  perceived  as  knowledge  sources,  which  can  be  any type  of software
program  of  widely  varying  size  and  complexity,  as  they  either  produce  or  modify
knowledge.     Most  agents,  particularly  interface  subsystems,  will  have  capabilities,
interests and acquaintances.   A capability is an output information field from an  agent,
and  is  used  by  other agents that  have  both  an  interest  in  the  information  and  is  an
acquaintance  of  the  agent  providing  the  output.    An  interest is  an  input  information
field  that  is  used  by  an  agent  to  perform  specific  tasks,  and  can  only  use  the
information   if   is   an   acquaintance  of   the   agent   providing   the   information.      An
acquaintance  is  a  representation  of a  relationship  between  two  or  more  agents that
are associated with common information fields.

The  approach  taken  to  create  the  components  of  smart  search  in   a  real-time
environment was to create a knowledge based system that would provide a distributed
base   for  the   on-board  decision   making   process.     There   are   many   advanced
technology  concepts  that  are  applicable  to  the  MMU  task.     Intelligent  information
transfers to and from the MMU are useful and necessary.  This information transfer is in
the  form  of  information  fields,  and  can  be  passed  between  the  MMU  and  either  a
component subsystem or an interface subsystem.   Each MMU subsystem agent will be
separately  evalu.ated,  and  will  be designed  and developed based on that  evaluation.
Some  subsystem  agents will  require  Al  based  solutions,  while  others will  not  require
any  form  of  Al  technology.    The  concept  of  semi-autonomy  permits  the  component
subsystems  to  control  their  specific  environments,  while  still  being  responsive  to
command  and  control  information  from  the  MMU.    This  information  is  transmitted
between the MMU and component subsystems or interface subsystems.

Due to the complex interrelationships  between the  agents, the distributed AI  concept
of  multi-agent  systems  will  be  used.   The  multi-agent  system  will  comprise  intelligent
behavior  among  the  semi-autonomous  subsystems.    These  agents  will  coordinate
knowledge,  data and goals in  order to take action or solve problems.   Interaction  and
communication  will  be  routed  through  the  MMU,  so  there will  be  no  interconnections
between  the  other  agents.    It  is  possible  to  create  interconnections  between  other
agents,  but this would probably push us beyond a real-time window for all but the  most
simple cases.   We will  use a component based framework,  as we are designing  and
building  a conglomerate  of  mutually dependent tasks which  will  be  decomposed into
appropriate  subtasks.    Because there will  be  occasions where we will  have the  need
to  go  beyond the  surface  understanding  of a problem  and  understand the  underlying
domain  knowledge,  deep  knowledge  will  be  used.    Because  it  is  less  biased  toward
direct   use,   deep   knowledge   allows   us   to   create   reusable   software   for   other
subsystems or projects.



The  concept  of  approximate  processing  will  be  used  for  the  MMU.    Approximate
processing   can   be   used  on  both  data  and   knowledge,   and  will  make   real-time
solutions possible.   The  need for approximate  processing  is because current  methods
in  smart  weapons  mission  planning  have  not  yet  reached  an  appropriate  level  of
expertise.   An example of the need for approximate processing would be in the area of
real-time   mission   replanning.     By  being  able  to  approximate  the  decision  making
process,  some of the detailed analysis can  be avoided.   Under certain circumstances,
approximate  processing  may  be  better suited to  our purposes than  exact  processing,
as solutions  might  not be  possible  if exact processing was used.   These approximate
processing  activities  will  be  consistent  with  exact  processing  activities,  and  both
strategies will  be combined at a later date.   Exact processing will  replace approximate
processing  when  the  level  of  mission  planning  expertise  is  raised  to  a  level  that
permits  the  replacement to  take  place.    Knowledge  approximation  can  be  used  until
such  time that  exact  knowledge  strategies  are  available.    It would  not  be  unusual  to
leave  an  approximate  processing  system  in  place  even  after exact  knowledge  was
available,  as the  approximate  knowledge  may  be  sufficient,  and  may  perform  better
than an exact knowledge counterpart.

In order to guarantee  real-time command and control, fact maintenance is required for
the  the  MMU  and  each  interface  subsystem.   This  is  a  requirement that  will  help  to
avoid  data  degradation.     Fact  maintenance  should  be  invoked  whenever:  (1)   a
milestone  has  occurred  (area scanned, target destroyed,  etc.),  or (2)  certain  data or
facts are  no longer considered useful or credible.

We   will   be   developing   software   based   on   at   least   one   of   three   knowledge
representation  concepts: decision trees,  a  hybrid goal-directed  & data-driven  system,
or a  hybrid  frame/object-based  &  rule-based  system.    In  so  much  as the  information
about these  knowledge  representation  concepts  is  widely  available,  I  will  not go  into
detail about the concepts.   Instead,  I will mention the possible candidate software tools
for each  concept.    In  the  area of decision trees,  The  "Knowledge  Shaper' tool  (from
Perceptics)  will  generate  optimized  procedural  Ada  code,  based  on  one  or  more
irreducible  decision  trees.    This  tool  creates  the  decision  trees  with  or  without  the
implementation of user designed cost or control biases.   We would need to create the
software   that   would   invoke   these   generated   processes.     The   book   "Artificial
Intelligence  with  Ada"  (by  Louis  Baker,1989,  MCGraw  Hill  Publishers)  has  examples
and source code for both goal-directed and data-driven systems.   Our internal design
and  development  effort would  require  an  integration template joining  the two types of
systems.   For the  hybrid frame/object-based &  rule-based system, the "AF}T/Ada" tool
(from  Inference)  integrates frames & objects with  rules.   Also, the "Artificial  Intelligence
with Ada" book has examples and source code for this type of system.   This would be
an  internal  design  and  development  effort,  and  would  only  be  used  if there  was  an
agent that required a hierarchical inheritance structure.



Priority  Area  Search  Terrain  Analysis  -  PASTA

Another task  was  to  provide  a  way  to  perform  real-time  priority  area  search  terrain
analysis,  in  order to determine the  most  likely  locations for targets or threats.   PASTA
will  permit an  autonomous air vehicle to  rank and  rate the cells of a terrain grid,  based
on a list of specified vehicles.   The  PASTA agent will  be an interface subsystem of the
MMU,  and  will  have  its  own  specific  subgoals.    It  will  identify  possible  target  areas,
based on  "a priori" information  about the terrain grid in question.

A  straightforward  algorithm  is  used  to  help  determine  the  most  likely  locations  for
targets  or  threats.     Vehicle  specific  continuous  functions  are  required  to  quantify
relationships  based  on  terrain  slopes  and  terrain  cell  proximities.    An  example  of  a
terra.in  sldpe  tunct.lan  .is  now  described.    For  an _S_S-21  .TEE  {Tr?nsporter. Erec|,or
Launcheri,   the  terrain   slope  value  .Is  be!w?en  _0._0   and .1.0__inplusive,  .wh.pre   t.he.
continuotis  function  produbes  values  such  th€t  0.0  ?qL!£ls  9_0.  degrees  inplipe, ..P.5
equals a 45 degree ifrcline ?n.d_1.0 Equals ai 0..degree inc.II.ne.  .T.he equatig.n looks !i.*p:
TSss-21 TEL = (90-incline[d.g])  /  90.    Two  possible  examples  of  terrain  cell  proximities
are now described.   The first example is for a UAZ-469 (Jeep).   The prox/.mffy va/ue for
a  tree  cell  near  a  road  cell  is  0:0  to  1.0  .Inclusive,  where  the  continuous  function
produces values  such tf tat .P.0_ e_quals .a dis{?poe of 2.5P.Peter.S or ,more..fr_oT_t_he_ _t|,eLe_'cell to the  nearest road cell,  0.5 -equals a distance of 125 metgrs frqm the tree..cell !o

the  nearest  road  cell,and  1.0  equals a d.Istaince  of 0  ngeters from the tree  cell tg _th_e
nearest    road    Ce//.      The   equation   looks   like:   TPss.21   TEL[tree->road]   =   (250-
distance[m.I.I.I) /  250.    The  second  example  is  also  for a  UAZ-469.    The  prox/`m/.fy
value for a tred cell  near an open field cell is 0.0 to  1.0 inclus_ive,_where the continu.ous
function  produces values such th?I .0..0  equ_al_s ai dis.tance. 9f 100  Te_t_ers o.r mo,re frp.in_
the tree .cell to the riearest open field cell, 0.5 equals a dis|ance of 50_ meters from i.Pe
tree cell to the nearest operi fiield cell,and  1.0 equals a.  di.sta.poe o_i_0 meters from the
tree  ce// fo  fAe  nearest open  /r.e/d ce//.   The  equation  looks  like: TPssL2i TEL[tree->fleld]
= (100-distance[m.I.I.I)  /  100.

For each  of the steps  presented  in the  algorithm  example on the following pages, the
ita/i.cs fexf offers a verbal description of the equations.   The first step is to read in all of
the  negative effector condition thresholds and  rules for each type of vehicle that is to
be  identified  (STEP  1).   This step  uses "a priori" knowledge about all vehicle types to
determine  if it is  necessary to  look in a cell for a particular type  of vehicle.    By  using
rules and thresholds,  a negative value  (0.0)  or positive value  (1.0) can  be assigned to
any vehicle  likelihood.   The  next step is to  read in  potential positive effector conditions
and  likelihoods  (STEP 2).   This step uses "a priori" knowledge about all vehicle types
to determine the potential positive effectors for all of the vehicle types.

After reading in the  negative and potential positive effectors, the next step is to read in
the  cell  information  and  likelihoods of the terrain  cells  (STEP 3 shows a subset of the
cell  input  data).    This  cell  information  is  also  "a  priorin  knowledge  about  the  ter.rain;
updated  terrain  information  can  also  be  read  in  at  this  step.    The  next  step  is  to
compute  the  negative  effector condition  likelihood  for  each  class  &  cell  combination
(STEP  4).   This step  is actually the execution  of the  rules from  STEP  1,  above.   The
fifth   step  in  this  algorithm  is  to  compute  the  potential  positive  effector  condition
likelihood  for each  vehicle  class  and cell  combination  (STEP  5).   This  step  multiplies



the values of each component in STEP 2 to the related component values for each cell
in  STEP 3,  and then dividing that number by the number of common components.   For
comparison  purposes,  the  MAX  option  is also displayed.   The  last step is to compute
the  likelihoods for each  vehicle  type  in  all cells  (STEP  6).   This  step  simply  multiplies
that  vehicle  related  values  from  STEP  4  and  STEP  5  to  produce  the  probabilities.
Once again, the MAX option is also displayed.

Figure  2  shows a diagrammed view of a possible analysis.   The   shaded "probability"
squares  reflect  pre-determined  probability  levels  for target  or threat  likelihood.    For
example,  an  Excellent  value  would  be  considered  a  75°/o  to  100°/o  target  or threat
probability,  and  an  Average  value  would  be  considered  a  50%  to  62.5°/o  target  or
threat probability.   The numbers inside the cells represent a ranking of the search area
for a particular vehicle type (a UAZ-469 Jeep, for example).
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Figure 2, Terrain cell  rankings (with  shaded probability levels)

An example of the  PASTA algorithm  is now presented.   Note the following  references:
[1]  SS-21  TEL is code  for a Transporter Erector (Missile)  Launcher,  [2]  BTF]-60PA is
code  for an  Armored  Command  Vehicle,  and  [3]  UAZ-469  is code for a Jeep.   Also
note that the -> symbol  represents  relativity between cells.   For example, tree->road
refers to the relative distance from a tree dominated cell to the closest road dominated
cell.



STEP  1   -  F]cad  ln  the  negatlve  ®ffector  condltlon  thresholds  &  rules.
SS21 -TEL threshoids

NTLssL2i TEJfieid]  I  [1.0]
NTLssL2i TEL[tree]  =  [1.0]                            throshokJ /*o/i.hood /or ssL2J  7EL ;.a a lroo co// j.s  /.O
NTLss.21 TE|urban]  = [1.0]
NTLssL2i TEJrailroad]  = [1.0]
NTLss.21 TEJwater]  =  [1.0]
NTLss.2` TEL|\ree->t.leld| = [0.8|             throshoid likelihood for ss-21  TEL in a tree cell and.near a fieid is o.8
NTLss.2i TEL[tree->road]  =  [0.6]
NTLss.21 TEJfield->tree]  =  [0.8]
NTLss.21 TEL[terrain  SIOpe]  =  [0.9]

SS21-TEL  rules
NLss.21 TEL  =  1.0

If urban >= NTLss.21 TEJurban] then NLss.21 TEL = 0.0
lf railroad >= NTLssr2i TEL[railroad] then NLss2i lil = 0.0
lf water >= NTLss2i TE|Water] then NLss.21 TEL = 0.0
lf field >= NTLss.21 TEL[fieid]  and field->tree < NTLss.21 TEL[field->tree] then NLss.21 TEL = 0.0
lf tree >=  NTLssei TEL[tree]  and tree->fieid < NTLss.21 TEL[tree->fieid] then NLss.21 TEL = 0.0
If tree >= NTLss.21 TEL[tree] andtree->road < NTLss.21 TEL[tree->road] then NLss.21 TEi = 0.0
lf terrain slope < NTLssL2i TEL[terrain slope] then NLss.21 TEL = o.o

UAZ-469 thresholds
NTLUAz4edfieid]  = [i .o]
NTLUAz46altree]  =  [1.o]
NTLUAz+co{urban]  = [1.0]
NTLUAz46Ofrailroad]  = [1.0]
NTLjAz4ce(Water]  = [1.0]
NTLUAz+69[Swamp]  = [1.0]
NTLUAzultree->field] = [0.5]
NTLUAz4co[tree->road]  = [0.7]     .
NTLUAz+al field->tree]  = [0.5]

UAZ-469 rules
NLUAzco =  1.0
lf urban >= NTLjAz46Jurban] then NLUAzng = 0.0
lf railroad >= NTLUAzusJrailroad] then NLUAzue = 0.0
lf water >= NTLjAzulwater] then NLUAzco = 0.0
lf swamp >= NTLjAz+69[Swamp] then NLUAlT4co = 0.0
lf field >= NTLjAzulfield] andfieid->tree < NnuAzulfieid->tree] then NLUAz+co = 0.0
lf tree >= NTLu&rdtree] andtree->fieid < NTLUAz469[tree->fieid] then NLUAZT4co = 0.0
lf tree >= NTLjAl+co[tree] andtree->road < NTLUAz+co[tree->road] then NLUAzro = 0.0

STEP  2  -  f]ead  ln  the  potentlal  posltlve  effector  condltlons  &  Ilkellhoods.
PLss,2nEL|\ree->I.leld\ --[0.9|               likelihoed of ss-21 TEL in a trco cell and.near a fiekl is o.9
pLss.21 TEL[tree->road]  = [o.7]
pLssL2i TEL[field->tree]  =  [o.9]
PLss.21 TEL[field->road]  =  [0.6]
PLss.21 TEL[road->tree]  =  [o.6]
PLssL2i TEi[road->f ield]  =  [0.8]
PLss.2i TEi[road] =  [o.7]
pLssL2i TEJfield]  =  [o.5]



STEP  2  -  cant.
PLjAlco[tree->fieid]
PLUAIco [tree->road]
PLjAl+e®[field->tree]
PLUHico [f ield->road]
PLu&|co [road->tree]
PLUAlco [road->f ield]
PLUAzco [road]  = [0.9]
PLjAlae [field]  = [0.5]

STEP  3  -  Read  ln  the
cell [road] = [1.0]

cell  lnformatlon  &  Ilkellhoods  of  three  random  cells.
roaid likelihood is  1.0 for this cell

cell2[tree]  = [o.o]
Cell2[field]  =  [0.0]
celL[water] = [0.0]
cell2 [swamp] = [o.o]
Cell2[urban]  = [0.0]
Cell2 [railroad]  = [0.0]
Cell2[terrain slope]  = [0.9]      torrai.n sfopo /i.ke/i.hood i.s O.g /or fhi.s co//
Cell2  [tree->field]  = [0.0]
Cell2 [tree->road]  = [0.0]
Cell2  [field->tree]  = [0.0]
Cell2 [field->road]  = [0.0]
cello [road->tree] = [0.9]
Cell2 [road->field]  = [0.9]

cell52 [road] = [o.o]
cell52[tree]  =  [o.o]
Cell52[field]  =  [0.0]
cell52 [water]  = [1.o]
cell52 [swamp] = [o.o]
Cells2 [urban]  = [0.0]
cell52 [railroad] = [o.o]
cell52 [terrain slope]  = [o.1]
Cell52 [tree->fieid]  = [0.0]
cell52 [tree->road] = [o.o]
Cell52 [field->tree]  =  [0.0]
Cell52  [field->road]  = [0.0]
cell52 [road->tree]  = [o.o]
Cell52  [road->field]  = [0.0]

celL[road] = [0.0]
cell64[tree]  = [o.o]
Cell64 [field]  =  [1.0]

celL [water] = [0.o]
cell [swamp] = [0.0]



STEP  3  -  cent.
cell [urban] a [0.0]
celL [railroad| = [0.0]
Cell [terrain Stope]  = [0.6]     forrai.n sfopo /i.ko/i.hood i.s a.6 /or fhi's co//
Cello.  [tree->fieid]  =  [0.0]
cell [tree->road] = [0.o]
cell6. [field->tree]  =  [0.71
cell [f ield->road] = [0.5]
Cells.  [road->tree]  = [0.0]
Cells.  [road->field]  = [0.0]

STEP  4  -  Compute  the  negatlve  effector  condltlon  llkellhood  for  each  class  &  cell
combination.
cell2NLss.21 TEL =  1.o

cell2NLUAzico =  1.o

cell52NLss.21 TEL =  o.o

cell52NLUAz4cO = o.o

cell64NLss.21 TEL =  o.o

cell64NLUAz4cO =  1.o

STEP  5  -  Compute  the  potential  positlve  effector  condltlon  llkellhood  for  each  class  &
cell   combination.
cellepLssL2, TEL = I(o.6 + o.9) + (o.8 . o.9) + (o.7 +  1 .o)I ; 3 = o.65    {MAx = o.72}
cell2PLUAzun = I(0.6 + 0.9) + (0.9 + 0.9) + (0.9 .  1.0)I / 3 = 0.75    {MAX = 0.9}

cell52pLss-21 TEL  =  o.o

cell52pLUAz4cO = o.o

cell64PLssL2i TEL = I(0.6 *  0.5) + (0.9 * 0.7)  + (0.5 *  1.0)] / 3 = 0.48    {MAX = 0.63}
Cells.PLUAzma = I(0.9 + 0.5) + (0.9 + 0.7)  + (0.5 +  1.0)I / 3 = 0.53    {MAX = 0.63}

STEP  6  -  Compute  llkellhoods  from  steps  4  &  5.
cellecLs&2, TEL = 1.o * o.65 = o.65    {MAx = o.72}
cellecLjAzae = 1.0 * 0.75 = 0.75    {MAX = 0.9}

cell52cLss.21 TEL = o.o * o.o = o.o
cell52CLUAzue = o.0 * 0.0 = 0.0

celLCLss.21 TEL = o.o * o.48 = o.o
Cell64CLUAz.ee =  1.0 * 0.53 = 0.53    {MAX = 0.63}

IIikelihood of SS-21 TEL in cell 2 is 0.65 {MAX likelihood is 0.72}

CONCLUSIONS

We have demonstrated that there will be tasks where the use of AI technology will be a
viable  alternative to conventional  software  systems for autonomous air vehicles.   Two
such tasks have been discussed in this paper.   The mission management task, where
control  of the  high-level functions of the  on-board software subsystems will occur,  and
the  priority  area  search  terrain  analysis  task,  where  a terrain  grid  is  subdivided  into
cells and  analyzed to determine the  most likely  locations for targets or threats.   While
there  is  significant  interest  in  incorporating  real-time  Al  technology  to  make  smart
weapons  a  reality  before  the  turn  of the  century,  the  ability  to  provide  expertise  for
these tasks is not as readily available.   Until such time, the best that can be done is to



emulate  the  expertise.   This can  be  accomplished  by  using  selected  information  from
current autonomous air vehicle systems.

One of the  issues that confronts Al  based systems is in verification  & validation  (V&V).
While  conventional,  procedural  Ada  code  is  fairly  easy  to  verify  &  validate,  most  Al
based  software  has  not  fared  as  well  in  the  past.    This  is  not  to  say  that  Al  based
software  can   not   be  verified   or  validated.     The   major  obstacle   confronting  the
developers  of tasks such  as the two  in  this  paper,  is to  generate  an  end  product that
conforms to V&V standards.   The software development of the tasks presented in this
paper lend themselves to a converted Ada based procedural code end-product.   This
fact alone greatly increases our ability to verify & validate the software.   By developing
modular code  whose  end-product  is  procedural  in  nature,  the  process  of  proving  the
correctness  and  functionality  will  be  easier  than  with  "pure  Al"  systems.     It  is  this
combination of advanced Al techniques and V&V acceptability that will permit Al  based
systems to move into the mainstream of real-time embedded computer systems.


